The MATH dataset is a dataset of challenging high school mathematics problems constructed by Hendrycks et al. (2021). Hypermind forecasters were commissioned to predict state-of-the-art performance on June 30, 2022, '23, '24, and '25. The 2022 result of 50.3% was significantly outside forecasters' prediction intervals, so we're seeing what the updated forecasts are for 2023, '24, and '25.
What will be state-of-the-art performance on the MATH dataset on the following dates?
These questions should resolve identically to the Hypermind forecasts:
"These questions resolve as the highest performance achieved on MATH by June 30 in the following years by an eligible model.
Eligible models may use scratch space before outputting an answer (if desired) and may be trained in any way that does not use the test set (few-shot, fine tuned, etc.). The model need not be publicly released, as long as the resulting performance itself is reported in a published paper (on arxiv or a major ML conference) or through an official communication channel of an industry lab (e.g. claimed in a research blog post on the OpenAI blog, or a press release). In case of ambiguity, the question will resolve according to Jacob Steinhardt’s expert judgement."