predicting probable understanding calculating probable predictions predicting definitive futures delivering contingent contingencies delivering contingent forecasts mapping the future delivering quantitative forecasts delivering intelligent insights composing contingent predictions generating definitive futures delivering probable insights exploring probable estimations assembling contingent contingencies predicting probable forecasts

Question

Metaculus Help: Spread the word

If you like Metaculus, tell your friends! Share this question via Facebook, Twitter, or Reddit.

Drake's Equation Question Set: 1st Parameter R∗, what is the average rate of formation of suitable stars (stars/year) in our galaxy?

In a recent paper, Dissolving the Fermi Paradox by Anders Sandberg, Eric Drexler & Toby Ord of the Future of Humanity Institute, University of Oxford, the Drake's Equation was run as a Monte Carlo Simulation rather than a point estimate using the following distributions for the parameters of the Drake's Equation;

Parameter Distribution:

  • log-uniform from 1 to 100.
  • log-uniform from 0.1 to 1.
  • log-uniform from 0.1 to 1.
  • log-normal rate, (giving mean 0.5 and median - 0.63).
  • log-uniform from 0.001 to 1.
  • log-uniform from 0.01 to 1.
  • log-uniform from 100 to 10,000,000,000.

I thought Metaculus would be able to produce distribution more reflective of our current knowledge, and allow the possibility of running Monte Carlo simulation more reflective of the possible outcomes of the Drake's Equation.

Some of the paper's (and see also this presentation) choices for parameter distributions are surprising such as which is unlikely to resolve to be significantly less than 1, unless I'm mistaken.

It would also be fun to see if the distribution of resolutions to Drake's Equation derived using Metaculus-determined parameter distribution, would match the distribution produced by directly asking Metaculus how Drake's Equation will resolve.

This is the first question of a Fermi paradox series. In this case we will be addressing the first parameter in the Drake's Equation, .

It is the rate of formation of stars (in stars/year in the Milky Way galaxy) suitable for the development of intelligent life. Most estimates assume this refers to main sequence stars, but do consider the suitability of dead stars such as white dwarfs and black holes, and failed stars such as brown dwarfs and rogue planets when entering your answer.

The resolution to this question will be the scientific consensus 100 years from now, regardless of any remaining uncertainty.

{{qctrl.predictionString()}}

Metaculus help: Predicting

Predictions are the heart of Metaculus. Predicting is how you contribute to the wisdom of the crowd, and how you earn points and build up your personal Metaculus track record.

The basics of predicting are very simple: move the slider to best match the likelihood of the outcome, and click predict. You can predict as often as you want, and you're encouraged to change your mind when new information becomes available. With tachyons you'll even be able to go back in time and backdate your prediction to maximize your points.

The displayed score is split into current points and total points. Current points show how much your prediction is worth now, whereas total points show the combined worth of all of your predictions over the lifetime of the question. The scoring details are available on the FAQ.

Note: this question resolved before its original close time. All of your predictions came after the resolution, so you did not gain (or lose) any points for it.

Note: this question resolved before its original close time. You earned points up until the question resolution, but not afterwards.

This question is not yet open for predictions.

Thanks for predicting!

Your prediction has been recorded anonymously.

Want to track your predictions, earn points, and hone your forecasting skills? Create an account today!

Track your predictions
Continue exploring the site

Community Stats

Metaculus help: Community Stats

Use the community stats to get a better sense of the community consensus (or lack thereof) for this question. Sometimes people have wildly different ideas about the likely outcomes, and sometimes people are in close agreement. There are even times when the community seems very certain of uncertainty, like when everyone agrees that event is only 50% likely to happen.

When you make a prediction, check the community stats to see where you land. If your prediction is an outlier, might there be something you're overlooking that others have seen? Or do you have special insight that others are lacking? Either way, it might be a good idea to join the discussion in the comments.