When will a quantum computer running Shor's algorithm (or a similar one) be used to factor one of the RSA numbers for the first time?

Your submission is now in Draft mode. Once it's ready, please submit your draft for review by our team of Community Moderators. Thank you!


Quantum computing has shown remarkable advancements in the past decade. In that time, quantum processors went from being almost purely theoretical devices to arguably achieving computational supremacy over classical computers in a limited scope.

Among the most promising capabilities of any sufficiently powerful quantum computer is their ability to factor very large numbers, the difficulty of which underlies many current cryptography systems. One of the best known quantum algorithms, known as Shor's algorithm, has the potential to run almost exponentially faster than the most efficient known classical factoring algorithm.

That being said, we’re currently quite a ways away from being able to use it in practice. As of writing, the largest number factored via Shor's algorithm is still only 21, achieved back in 2012. While current state-of-the-art quantum processors possess on the order of dozens of qubits, it is estimated that in order to factorize semiprimes on the same scale as those used in modern RSA cryptography would take thousands of qubits.

In order to encourage research into the problem of factoring large integers and potentially cracking RSA keys, RSA Laboratories put forward their RSA Factoring Challenge in 1991. Though the challenges officially ended in 2007, they’re still used as a common benchmark for factoring to this day. The largest number factored so far, RSA-240, was publicized only last December. The full list of numbers, including all known factorizations, can be found here.

When will a quantum computer running Shor's algorithm (or another polynomial-time integer factorization algorithm) be used to factor one of the previously unfactored RSA numbers for the first time?

Resolution will occur via credible media report and the public release of the prime factors. The factored RSA number must be one that previously had no publicly known factorization. If a quantum computer factors RSA-100 for example, that won't satisfy our criteria. The question will resolve retroactively 30 days before the announcement of the factors. The question resolves ambiguous if every RSA number ends up being factored via classical computer first.

Make a Prediction


Note: this question resolved before its original close time. All of your predictions came after the resolution, so you did not gain (or lose) any points for it.

Note: this question resolved before its original close time. You earned points up until the question resolution, but not afterwards.

This question is not yet open for predictions.

Current points depend on your prediction, the community's prediction, and the result. Your total earned points are averaged over the lifetime of the question, so predict early to get as many points as possible! See the FAQ.

Metaculus help: Predicting

Predictions are the heart of Metaculus. Predicting is how you contribute to the wisdom of the crowd, and how you earn points and build up your personal Metaculus track record.

The basics of predicting are very simple: move the slider to best match the likelihood of the outcome, and click predict. You can predict as often as you want, and you're encouraged to change your mind when new information becomes available.

The displayed score is split into current points and total points. Current points show how much your prediction is worth now, whereas total points show the combined worth of all of your predictions over the lifetime of the question. The scoring details are available on the FAQ.

Thanks for predicting!

Your prediction has been recorded anonymously.

Want to track your predictions, earn points, and hone your forecasting skills? Create an account today!

Track your predictions
Continue exploring the site