Metaculus Help: Spread the word

If you like Metaculus, tell your friends! Share this question via Facebook, Twitter, or Reddit.

Experimental tests of quantum effects in cognition?

Because many formulations of quantum mechanics explicitly include the "observer" (or at least "observation"), the place of conscious observers in the foundations of quantum mechanics has been a frequent, and quite controversial, issue.

Conversely, difficult questions regarding how conscious or mental activity is related to brain activity (the so-called "hard problem") have led some to suppose that this mystery may be related to puzzles involving quantum mechanics. Penrose, for example, has argued that the mind/brain cannot be modeled as a classical device, and that quantum effects are integral to thought.

If the brain really acts as a quantum computer, then it should presumably contain quantum systems sufficiently isolated from their environment to retain their essential quantum nature, rather than decohering into effectively classical systems. This is a challenge in the warm, wet environment of the brain, where studies have calculated that quantum states of electron-based systems should decohere in a tiny fraction of a second.

On the other hand, if quantum effects are potentially useful, the evolutionary drive toward high optimization is likely to have exploited them. And indeed, there is good evidence that quantum effects are employed in photosynthesis and some other biological processes.

Recently, a provocative paper by well-known physicist Matthew Fisher has appeared arguing that the nuceli of atoms are sufficiently isolated from the brain environment that nuclear spins could be used to store qubits, and manipulation of certain compounds could instantiate quantum computation. The paper proposes several experiments that could help validate or refute the hypotheses it puts forth.

Will this "quantum cognition" hypothesis be taken sufficiently seriously by the scientific community to investigate and test it?

The question will resolve as true if, by December 1, 2016, (a) The paper attains at least 15 citations as reported by Google Scholar, and (b) a paper is published or posted on the arXiv reporting a completed laboratory experiment that was inspired by (and directly references) Fisher's paper.


Metaculus help: Predicting

Predictions are the heart of Metaculus. Predicting is how you contribute to the wisdom of the crowd, and how you earn points and build up your personal Metaculus track record.

The basics of predicting are very simple: move the slider to best match the likelihood of the outcome, and click predict. You can predict as often as you want, and you're encouraged to change your mind when new information becomes available.

The displayed score is split into current points and total points. Current points show how much your prediction is worth now, whereas total points show the combined worth of all of your predictions over the lifetime of the question. The scoring details are available on the FAQ.

Note: this question resolved before its original close time. All of your predictions came after the resolution, so you did not gain (or lose) any points for it.

Note: this question resolved before its original close time. You earned points up until the question resolution, but not afterwards.

This question is not yet open for predictions.

Thanks for predicting!

Your prediction has been recorded anonymously.

Want to track your predictions, earn points, and hone your forecasting skills? Create an account today!

Track your predictions
Continue exploring the site

Community Stats

Metaculus help: Community Stats

Use the community stats to get a better sense of the community consensus (or lack thereof) for this question. Sometimes people have wildly different ideas about the likely outcomes, and sometimes people are in close agreement. There are even times when the community seems very certain of uncertainty, like when everyone agrees that event is only 50% likely to happen.

When you make a prediction, check the community stats to see where you land. If your prediction is an outlier, might there be something you're overlooking that others have seen? Or do you have special insight that others are lacking? Either way, it might be a good idea to join the discussion in the comments.